МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет биологический

УТВЕРЖДАЮ: И.о. проректора по учебной работе, качеству образования -Кагуров Т.А. 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Б1.В.ДВ.03.01 ОСНОВЫ МОЛЕКУЛЯРНОЙ БИОТЕХНОЛОГИИ

Специальность 06.05.02 Фундаментальная и прикладная биология		
Специализация	Микробиология и биотехнология	_
Форма обучения	<u> квнро</u>	_
Квалификация	специалист	

Рабочая программа дисциплины «Основы молекулярной биотехнологии» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по специальности 06.05.02 Фундаментальная и прикладная биология

Программу составил(и): Волченко Н.Н., к.б.н., доцент

Рабочая программа дисциплины утверждена на заседании кафедры генетики,

микробиологии и биохимии

протокол № 7 «21» марта 2025 г. Заведующий кафедрой <u>Худокормов А.А.</u>

Утверждена на заседании учебно-методической комиссии биологического факультета

протокол № <u>7</u> «<u>28</u>» марта 2025 г.

Председатель УМК факультета Букарева О.В.

Рецензенты:

Кремнёва О.Ю., зав. лабораторией фитосанитарного мониторинга, приборного и технического обеспечения ФГБНУ ФНЦ ВНИИБЗР, ведущий научн. сотр., канд. биол. наук

Щербатова А.Ф. доцент кафедры биологии и экологии растений ФГБОУ ВО КубГУ кандидат биологических наук

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целью освоения дисциплины "Основы молекулярной биотехнологии" является формирование у студентов профессиональной компетенции в производственной деятельности и пропаганда знаний, направленных на расширение представлений о методах управления потоком генетического материала, современных геномных технологиях, а также с последними достижениями технологий клеточной инженерии и клеточной селекции для решения практических задач растениеводства и современной микробиологии.

1.2 Задачи дисциплины

Задачи освоения дисциплины:

- сформировать у студентов базовое мышление, обеспечивающее представления о разнообразии биологических объектов;
- сформировать способность использовать методы наблюдения, описания, идентификации, классификации, культивирования биологических объектов;
- развивать у обучающихся навыки работы с молекулярно-биологическим оборудованием;
- развивать у студентов навыки работы с учебной и научной литературой;
- сформировать у студентов навыки самостоятельной аналитической и научно-исследовательской работы.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Основы молекулярной биотехнологии» относится к дисциплинам (модулям) по выбору части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (модули)». Изучению курса «Основы молекулярной биотехнологии» предшествуют дисциплины, необходимые для ее изучения, такие как «Микробиология», «Генетика и селекция», «Неорганическая химия», «Органическая химия».

Для усвоения курса студенту необходимо ориентироваться в проблемах общей биологии, биохимии, экологии. Иметь навыки самостоятельной работы с литературой, включая периодическую научную литературу по биологии, и навыки работы с электронными средствами информации. Материалы дисциплины используются студентами в научной работе при подготовке выпускной квалификационной работы, крайне важны в осуществлении практической деятельности специалиста биолога.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора	Результаты обучения по дисциплине		
ПК-1 Способен творчески использ	овать в научно-исследовательской деятельности знание		
фундаментальных разделов биологич	еских и экологических дисциплин.		
ИПК-1.1. Владеет современными	знает основные особенности организации генетического		
информационными ресурсами	материала у прокариот и эукариот		
биологического и экологического	умеет проводить работу по культивированию		
содержания и умеет использовать	микроорганизмов		
их в профессиональной	владеет навыками приготовления питательных сред для		
деятельности.	культивирования клеток		
ИПК-1.2. Владеет	знает основные способы регуляции репликации у		
экспериментальными методами	прокариот и эукариот		
исследований (по тематике	умеет культивировать изолированные клетки и ткани		
проводимых разработок).	владеет навыками определения клеточного цикла		
	эукариотической клетки		
ИПК-1.3. Умеет анализировать	знает основные тенденции развития современной		
результаты экспериментов и	биотехнологии		

Код и наименование индикатора	Результаты обучения по дисциплине
представлять их в форме	умеет интерпретировать результаты научных и
публикаций в рецензируемых	производственных исследований и делать биологически
научных изданиях.	значимые выводы
	владеет навыками написания научных статей, тезисов,
	аннотаций для рецензируемых журналов по результатам
	своей научной деятельности.
ИПК-1.4. Обладает навыками	знает правила делового этикета и свободно оперирует
проводить дискуссии на научных	биологическими терминами и фактами
(научно-практических)	умеет применять современные методологические
мероприятиях, использовать в	подходы для оценки биотехнологического потенциала
профессиональной деятельности	владеет навыками поиска научной информации, статей в
отечественные и зарубежные базы	учебных пособиях, периодических изданиях и сети
данных.	интернет
	основных понятиях и теориях биологии, биологических
	ия органического мира, и использовать эти знания в
	ораторных исследованиях и реализации научных проектов
в области биотехнологии, сельского х	озяйства и охраны природы.
ИПК-3.1. Владеет	знает основные понятия генной и клеточной инженерии
фундаментальными понятиями и	умеет пользоваться специальной справочной и
теоретическими знаниями биологии	биотехнологической литературой
и экологии.	владеет основными методами конструирования
	гибридных молекул ДНК
ИПК-3.2. Владеет современными	знает условия, необходимые для формирования
представлениями о закономерностях	клеточных культур растений и методы получения
развития органического мира.	протопластов
	умеет выращивать культуру каллусных тканей
	владеет основными способами получения и
	культивирования каллусных клеток
ИПК-3.3. Умеет использовать знание	знает основные ферменты, применяемые для создания
закономерностей биологических	векторных молекул
процессов и явлений, для подготовки	умеет анализировать и применять данные банков генов и
научных проектов и научно-	клонотек
технических отчетов в области	владеет навыками анализа генетических библиотек
биотехнологии, сельского хозяйства	
и охраны природы.	
Разунгтаты обущания по ни	сниппине постигаются в рамках осуществления всех

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетные единицы (108 часов), их распределение по видам работ представлено в таблице

Виды работ	Всего	Форма
	часов	обучения
		очная
		5 семестр
		(часы)
Контактная работа, в том числе:	44,3	44,3
Аудиторные занятия (всего):		
занятия лекционного типа	16	16
лабораторные занятия	0	0

практические занятия		18	18
семинарские занятия	0	0	
Иная контактная работа	<u> </u>	<u> </u>	
Контроль самостоятельно	10	10	
Промежуточная аттестаці	1 \	0,3	0,3
Самостоятельная работ		28,0	28,0
Выполнение индивидуальн	ных заданий (подготовка сообщений,	0	0
презентаций)		9	9
Реферат/эссе (подготовк	ca)	9	9
Самостоятельное изучен			
	го материала и материала учебников и	10	10
	овка к лабораторным занятиям.)		
Подготовка к текущему к	онтролю		
Контроль:	Контроль:		
Подготовка к экзамену	35,7	35,7	
Общая трудоемкость	час.	108	108
	в том числе контактная работа	44,3	44,3
	зач. ед	3	3

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 5 семестре (очная форма обучения)

		Количество часов				
№	Наименование разделов (тем)		Аудиторная работа		Внеаудит орная работа	
			Л	П3	ЛР	CPC
1.	Тема 1. Создание и применение гибридных молекул ДНК.	19	4	6		9
2.	Тема 2. Инструментарий ДНК-технологий	22	6	6		10
3.	Тема 3. Основы клеточной инженерии	21	6	6		9
	ИТОГО по разделам дисциплины	62	16	18	-	28
	Контроль самостоятельной работы (КСР)	10				
	Промежуточная аттестация (ИКР)	0,3				
	Подготовка к текущему контролю					
	Общая трудоемкость по дисциплине	108				

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

№	Наименование темы	Содержание темы	Форма текущего контроля
1.	и применение гибридных	Предмет, цели и задачи изучения дисциплины. Генная, генетическая и клеточная инженерия. Терминология и основные понятия генной и клеточной инженерии. Методы конструирования гибридных молекул ДНК invitro. Источники ДНК. Получение генов. Развитие методов рекомбинантных ДНК и культивирования изолированных тканей и клеток. Конструирование рекомбинантных ДНК. Репликация ДНК. Полуконсервативная репликация ДНК. ДНК-полимеразы. Вилка репликации ДНК. Регуляция репликации ДНК у бактерий. Понятие о репликоне и репликаторе. Репликация у эукариот. Полирепликонное строение хромосомы. «Фабрики» репликации ДНК в ядре. Клеточный цикл эукариотической клетки. Теломераза и репликация ДНК у эукариот	

			1 7 U
2.		Ферменты расщепления (рестриктазы) и сшивания (ли- газы).	Устный опрос
		Рестриктазы. ДНК-лигаза. ДНК-полимераза E.coli. Обратная	
		транскриптаза. Нуклеаза Ва131. Концевая	
		дезоксинуклеотидилтрансфераза. Поли (A)-полимераза E.coli.	
		Способы «нарезания» и идентификации фрагментов ДНК.	
		Соединение фрагментов ДНК. Обратная транскриптаза и ее	
		использование в генной инженерии.	
		Природа векторных молекул. Особенности молекулярной	
		организации векторов для генетического клонирования.	
	Тема 2.	Строение, биологические функции плазмид. Типы векторов:	
	Инструментарий	плазмидные и фаговые векторы природного и искусственного	
	ДНК-технологий	происхождения. Экспрессия чужеродной генетической	
	The real control in	информации в клетках бактерий, дрожжей, растений и животных.	
		Принципы конструирования векторов. Фаг λ, и векторы,	
		сконструированные на основе его генома. Фазмиды, космиды и	
		их применение. Банки генов и клонотеки. Векторные системы для	
		клонирования в клетках дрожжей. Природные векторы для	
		растений. Организация и «поведение» Ті-плазмиды. Библиотека	
		компонентов генетических алгоритмов. Анализ генетических	
		библиотек	
		Плазмиды агробактерий как векторы для трансформации.	
		Изучение возможностей повышения эффективности	
		биологической фиксации атмосферного азота.	
3.		Клеточная инженерия растений. Условия формирования	Vстный опрос
-		клеточных культур растений. Культивирование клеток и тканей	I i i i i i i i i i i i i i i i i i
		растений. Методы получения протопластов. Методы	
	Tava 2 Correcti	культивирования одиночных клеток. Создание генетического	
	клеточной	разнообразия для селекции на основе растительных	
		протопластов.	
	инженерии	Каллусогенез как основа создания клеточных культур.	
		Особенности и виды каллусной ткани. Способы получения	
		культивируемых каллусных клеток. Методы культивирования	
		выращиваемых культур каллусных тканей. Стабильность и	
		выращиваемых культур каллусных тканей. Стабильность и вариабельность геномов растительных клеток in vitro.	
		вариаосльность теномов растительных клеток иг vitto.	

2.3.2 Лабораторные работы

№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
	Создание и применение гибридных молекул ДНК	Генная, генетическая и клеточная инженерия. Методы конструирования гибридных молекул ДНК in vitro. Регуляция репликации ДНК у бактерий. Клеточный цикл эукариотической клетки	
	Инструментарий ДНК- технологий	Фаг λ, и векторы, сконструированные на основе его генома. Фазмиды, космиды и их применение. Упаковочная система фага λ. Банки генов и клонотеки. Векторные системы для клонирования в клетках дрожжей.	
3.	Основы клеточной инженерии	Перенос генов из бактерий рода Agrobacterium в растения. Создание трансгенных растений с помощью плазмид Ті A. tumefaciens.	Р, К

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т), устный опрос (У) и т.д.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1		Методические рекомендации по организации самостоятельной работы студентов кафедры генетики, микробиологии и биохимии, утвержденные кафедрой протокол № 07 от 21.03.2025 г
2		Методические рекомендации по организации самостоятельной работы студентов кафедры генетики, микробиологии и биохимии, утвержденные кафедрой протокол № 07 от 21.03.2025 г

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

При реализации учебной работы по освоению курса "Основы молекулярной биотехнологии" используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- проектные методы обучения;
- исследовательские методы в обучении;
- проблемное обучение

Темы для рефератов:

- 1. Рестриктазы
- 2. ДНК-лигаза
- 3. ДНК-полимераза E.coli
- 4. Обратная транскриптаза
- 5. Нуклеаза Ва131
- 6. Концевая дезоксинуклеотидилтрансфераза
- 7. Поли (A)-полимераза E.coli
- 8. Способы «нарезания» и идентификации фрагментов ДНК
- 9. Соединение фрагментов ДНК
- 10. Обратная транскриптаза и ее использование
- 11. Создание векторов на основе вирусов
- 12. Методы редактирования генома
- 13. Микроклональное размножение растений
- 14. Генетическая инженерия
- 15. Клеточная инженерия

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Основы молекулярной биотехнологии».

Оценочные средства включает контрольные материалы для проведения **текущего** контроля в форме устного опроса по теме или разделу, доклада-презентации, дискуссиям и **промежуточной аттестации** в форме вопросов к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

№ Код и наименование		Результаты обучения	Наименование оце	еночного средства
п/п	индикатора		Текущий контроль	Промежуточная аттестация
1	ИПК-1.1. Владеет современными информационными ресурсами биологического и экологического содержания и умеет использовать их в профессиональной деятельности.	знает основные особенности организации генетического материала у прокариот и эукариот умеет проводить работу по культивированию микроорганизмов владеет навыками приготовления питательных сред для культивирования клеток	Вопросы для устного опроса по теме 1, реферат; доклад-презентация	Вопросы на зачёте 1-4
2	ИПК-1.2. Владеет экспериментальными методами исследований (по тематике проводимых разработок).	знает основные способы регуляции репликации у прокариот и эукариот умеет культивировать изолированные клетки и ткани владеет навыками определения клеточного цикла эукариотической клетки	Вопросы для устного опроса по теме 1, реферат; доклад-презентация	Вопросы на зачёте 5, 10-13
3	ИПК-1.3. Умеет анализировать результаты экспериментов и представлять их в форме публикаций в рецензируемых научных изданиях.	знает основные тенденции развития современной биотехнологии умеет интерпретировать результаты научных и производственных исследований и делать биологически значимые выводы владеет навыками написания научных статей, тезисов, аннотаций для рецензируемых журналов по результатам своей научной деятельности	Вопросы для устного опроса по теме 2, реферат; доклад-презентация	Вопросы на зачёте 14-17

4	ИПК-1.4. Обладает навыками проводить дискуссии на научных (научно-практических) мероприятиях, использовать в профессиональной деятельности отечественные и зарубежные базы данных.	знает правила делового этикета и свободно оперирует биологическими терминами и фактами умеет применять современные методологические подходы для оценки биотехнологического потенциала владеет навыками поиска научной информации, статей в учебных пособиях, периодических изданиях и сети интернет	Вопросы для устного опроса по теме 2, реферат; доклад-презентация	Вопросы на зачёте 18, 20-23, 26
5	ИПК-3.1. Владеет фундаментальными понятиями и теоретическими знаниями биологии и экологии.	знает основные понятия генной и клеточной инженерии умеет пользоваться специальной справочной ибиотехнологической литературой владеет основными методами конструирования гибридных молекул ДНК	Вопросы для устного опроса по теме 3, реферат; доклад-презентация	Вопросы на зачёте 24-25, 27, 38-41
6	ИПК-3.2. Владеет современными представлениями о закономерностях развития органического мира.	знает условия, необходимые для формирования клеточных культур растений и методы получения протопластов умеет выращивать культуру каллусных тканей владеет основными способами получения и культивирования каллусных клеток	Вопросы для устного опроса по теме 3, реферат; доклад-презентация	Вопросы на зачёте 28-37
7	ИПК-3.3. Умеет использовать знание закономерностей биологических процессов и явлений, для подготовки научных проектов и научно-технических отчетов в области биотехнологии, сельского хозяйства и охраны природы.	знает основные ферменты, применяемые для создания векторных молекул умеет анализировать и применять данные банков генов и клонотек владеет навыками анализа генетических библиотек	Вопросы для устного опроса по теме 2, реферат; доклад-презентация	Вопросы на зачёте 6-9, 19

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Текущий контроль успеваемости проводится фронтально на каждом занятии для определения теоретической подготовки в виде устного опроса, а также с помощью докладов (рефератов) студентов с мультимедийными презентациями и коллоквиумов.

Перечень вопросов для устного контроля знаний студентов:

Тема 1. Инструментарий ДНК-технологий

- 1. Методы конструирования гибридных молекул ДНК invitro
- 2. Источники ДНК и генов
- 3. Принципы конструирования рекомбинантных ДНК
- 4. Сущность репликации ДНК
- 5. Регуляция репликации ДНК у бактерий
- 6. Ферменты расщепления (рестриктазы) и сшивания (лигазы)
- 7. Обратная транскриптаза и ее использование в генной инженерии
- 8. Природа векторных молекул

Тема 2. Создание и применение гибридных молекул ДНК

- 9. Особенности молекулярной организации векторов для генетического клонирования
- 10. Строение, биологические функции плазмид
- 11. Векторные системы, применяемые при молекулярном клонировании в клетках прокариот
- 12. Типы векторов: плазмидные и фаговые векторы природного и искусственного происхождения
- 13. Экспрессия чужеродной генетической информации в клетках бактерий, дрожжей, растений и животных
- 14. Особенности организации векторных систем для экспрессии генов
- 15. Принципы конструирования векторов
- 16. Фазмиды, космиды и их применение
- 17. Банки генов и клонотеки
- 18. Природные векторы для растений
- 19. Библиотека компонентов генетических алгоритмов
- 20. Микроорганизмы микрообъекты генетической инженерии. Взаимосвязи вектор- хозяин
- 21. Оптимизация экспрессии и повышенной продукции рекомбинантных белков в микробных клетках
- 22. Методы сайт-специфического мутагенеза
- 23. Методы определения нуклеотидной последовательности ДНК
- 24. Конструирование штаммов-продуцентов
- 25. Клонирование и идентификация клонированных ДНК
- 26. Методы определения нуклеотидной последовательности по Максему-Гилберту, Сэнджеру.
- 27. Изучение возможностей повышения эффективности биологической фиксации атмосферного азота

Тема 3. Основы клеточной инженерии

- 28. Направления развития клеточной инженерии
- 29. Условия формирования клеточных культур растений 53. Культивирование клеток и тканей растений
- 30. Методы получения протопластов
- 31. Методы культивирования одиночных клеток растений
- 32. Создание генетического разнообразия для селекции на основе растительных протопластов
- 33. Каллусогенез как основа создания клеточных культур
- 34. Особенности и виды каллусной ткани
- 35. Способы получения культивируемых каллусных клеток

- 36. Методы культивирования выращиваемых культур каллусных тканей
- 37. Практическое использование клеточной инженерии растений
- 38. Использование культуры каллусных клеток для получения веществ вторичного синтеза
- 39. Биотехнология клонального микроразмножения и оздоровления растений
- 40. Биоэтические проблемы генетической и клеточной биотехнологии

Критерии оценки:

Оценка «отлично» / «зачтено». Ответы на поставленные вопросы излагаются логично, последовательно и не требуют дополнительных пояснений. Полно раскрываются причинно-следственные связи между явлениями и событиями. Делаются обоснованные выводы. Соблюдаются нормы литературной речи

Оценка «хорошо» / «зачтено». Ответы на поставленные вопросы излагаются систематизировано и последовательно. Материал излагается уверенно. Раскрыты причинно-следственные связи между явлениями и событиями. Демонстрируется умение анализировать материал, однако на все выводы носят аргументированный и доказательный характер. Соблюдаются нормы литературной речи.

Оценка «удовлетворительно» / «зачтено». Допускаются нарушения в последовательности изложения. Неполно раскрываются причинно-следственные связи между явлениями и событиями. Демонстрируются поверхностные знания вопроса, с трудом решаются конкретные задачи. Имеются затруднения с выводами. Допускаются нарушения норм литературной речи.

Оценка «неудовлетворительно» / «не зачтено». Материал излагается непоследовательно, сбивчиво, не представляет определенной системы знаний по дисциплине. Не раскрываются причинно-следственные связи между явлениями и событиями. Не проводится анализ. Выводы отсутствуют. Ответы на дополнительные вопросы отсутствуют. Имеются заметные нарушения норм литературной речи.

Критерии оценки реферата:

Оценка «зачтено» ставится, если обозначена проблема и обоснована ее актуальность, сделан краткий анализ различных точек зрения на рассматриваемую проблему, тема раскрыта, выдержан объем, соблюдены требования к внешнему оформлению, даны правильные ответы на дополнительные вопросы.

Оценка «не зачтено» ставится, если тема реферата не раскрыта или имеются существенные отступления от требований к реферированию. В частности, тема освещена лишь частично; допущены фактические ошибки в содержании реферата или при ответе на дополнительные вопросы; во время защиты отсутствует вывод.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Вопросы для подготовки к зачету:

- 1. Методы конструирования гибридных молекул ДНК invitro
- 2. Источники ДНК и генов
- 3. Принципы конструирования рекомбинантных ДНК
- 4. Сущность репликации ДНК
- 5. Регуляция репликации ДНК у бактерий
- 6. Ферменты расщепления (рестриктазы) и сшивания (лигазы)
- 7. Обратная транскриптаза и ее использование в генной инженерии
- 8. Природа векторных молекул

- 9. Особенности молекулярной организации векторов для генетического клонирования
- 10. Строение, биологические функции плазмид
- 11. Векторные системы, применяемые при молекулярном клонировании в клетках прокариот
- 12. Типы векторов: плазмидные и фаговые векторы природного и искусственного происхождения
- 13. Экспрессия чужеродной генетической информации в клетках бактерий, дрожжей, растений и животных
- 14. Особенности организации векторных систем для экспрессии генов
- 15. Принципы конструирования векторов
- 16. Фазмиды, космиды и их применение
- 17. Банки генов и клонотеки
- 18. Природные векторы для растений
- 19. Библиотека компонентов генетических алгоритмов
- 20. Микроорганизмы микрообъекты генетической инженерии. Взаимосвязи вектор- хозяин
- 21. Оптимизация экспрессии и повышенной продукции рекомбинантных белков в микробных клетках
- 22. Методы сайт-специфического мутагенеза
- 23. Методы определения нуклеотидной последовательности ДНК
- 24. Конструирование штаммов-продуцентов
- 25. Клонирование и идентификация клонированных ДНК
- 26. Методы определения нуклеотидной последовательности по Максему-Гилберту, Сэнджеру.
- 27. Изучение возможностей повышения эффективности биологической фиксации атмосферного азота
- 28. Направления развития клеточной инженерии
- 29. Условия формирования клеточных культур растений.
- 30. Культивирование клеток и тканей растений
- 31. Методы получения протопластов
- 32. Методы культивирования одиночных клеток растений
- 33. Создание генетического разнообразия для селекции на основе растительных протопластов
- 34. Каллусогенез как основа создания клеточных культур
- 35. Особенности и виды каллусной ткани
- 36. Способы получения культивируемых каллусных клеток
- 37. Методы культивирования выращиваемых культур каллусных тканей
- 38. Практическое использование клеточной инженерии растений
- 39. Использование культуры каллусных клеток для получения веществ вторичного синтеза
- 40. Биотехнология клонального микроразмножения и оздоровления растений
- 41. Биоэтические проблемы генетической и клеточной биотехнологии

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«зачтено»: студент, показал при ответе достаточное теоретическое знание дисциплины, понимает сущность рассматриваемых понятий, явлений и закономерностей; допускает незначительные ошибки; студент умеет правильно объяснять материал, иллюстрируя его примерами.

«не зачтено»: студент материал не усвоил или усвоил частично, затрудняется привести примеры по дисциплине, имеет довольно ограниченный объем знаний программного материала, допускает грубые фактические ошибки.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий 5.1. Учебная литература

- 1. Давыдова, О. Методы генетических исследований микроорганизмов: учебное пособие / О. Давыдова; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет». Оренбург: ОГУ, 2013. 132 с. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=259161.
- 2. Ермишин, А.П. Генетически модифицированные организмы и биобезопасность / А.П. Ермишин. Минск: Белорусская наука, 2013. 172 с. ISBN 978-985-08-1592-7 ; [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=231206.
- 3. Молекулярная биология: лабораторный практикум / О.С. Корнеева, В.Н. Калаев, М.С. Нечаева, О.Ю. Гойкалова; Министерство образования и науки РФ, ФГБОУ ВПО «Воронежский государственный университет инженерных технологий»; науч. ред. О.С. Корнеева. Воронеж : Воронежский государственный университет инженерных технологий, 2015. 52 с. : ил. Библиогр. в кн. ISBN 978-5-00032-106-5; То же [Электронный ресурс]. URL: https://biblioclub.ru/index.php?page=book&id=336018.
- 4. Генетические основы селекции растений: монография / Национальная академия наук Беларуси, Институт генетики и цитологии. Минск: Белорусская наука, 2014. Т. 4. Биотехнология в селекции растений. Геномика и генетическая инженерия. 654 с.: ил. Библиогр. в кн. ISBN 978-985-08-1791-4; То же [Электронный ресурс]. URL: https://biblioclub.ru/index.php?page=book&id=330525.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2. Периодическая литература

Название издания	Периодичност ь выхода (в год)	Место хранения	За какие годы хранится
Биология.Реферативный журнал.ВИНИТИ	12	РЖ	1970-2020 №1-2
Биоорганическая химия	6	Ч3	1975-2008, 2009 № 1-3, 5-6, 2010 - 2018 (1 полуг.)
Биохимия	12	Ч3	1944-45, 1947 – 2018 (1полуг.)
Генетика	12	Ч3	1965- 2016, 2017 № 1-6
Журнал микробиологии, эпидемиологии и иммунобиологии	6	ЧЗ	2010-2018 № 1-3, 2019 № 1-3, № 5-6, 2020-
Журнал общей биологии	6	Ч3	2009-2017 № 1-3, 2018 (1 полуг.)
Защита окружающей среды в нефтегазовом комплексе		ЧЗ	2008 №7-12, 2009- 2012, 2013 № 7-12, 2014-2015, 2017 № 1-3
Известия ВУЗов Северо- Кавказского региона. Серия: Естественные науки	4	ЧЗ	2010- 2012, 2013№ 1-2, 4-6, 2014-
Известия РАН (до 1993 г. Известия АН СССР). Серия: Биологическая	6	Ч3	2009-2018 (1 полуг.)
Использование и охрана природных ресурсов в России	12	Ч3	2008-2017 № 1-2
Микробиология	6	Ч3	2009-2018 №1-3
Молекулярная биология	6	Ч3	2008- 2016, 2017 № 1-3
Прикладная биохимия и микробиология	6	Ч3	2008- 2013, 2014 № 1-5, 2015- 2016, 2017 № 1-3
Успехи современной биологии	6	Ч3	2008-2017
Экология	6	Ч3	2009-2018(1 полуг.)
Экология и жизнь	12	Ч3	2003-2012
Экология и промышленность России	12	Ч3	2008-2017

- 1. Базы данных компании «ИВИС» https://eivis.ru/
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. Образовательная платформа «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. ЭБС «BOOK.ru» <u>https://www.book.ru</u>
- 4. 9EC «ZNANIUM» https://znanium.ru/
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Виртуальный читальный зал Российской государственной библиотеки (РГБ) https://ldiss.rsl.ru/
- 2. Национальная электронная библиотека https://rusneb.ru/
- 3. Научная электронная библиотека eLIBRARY.RU (НЭБ) http://www.elibrary.ru/
- 4. Полнотекстовая коллекция журналов на платформе РЦНИ (Электронные версии научных журналов РАН) https://journals.rcsi.science/
- 5. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/

- 6. Университетская информационная система РОССИЯ (УИС Россия) http://uisrussia.msu.ru
- 7. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 8. Полнотекстовая коллекция книг eBook Collections издательства SAGE Publications https://sk.sagepub.com/books/discipline
- 9. Полнотекстовая коллекция книг EBSCO eBook (глубина архива: 2011-2023 гг.) https://books.kubsu.ru/
- 10. Ресурсы Springer Nature https://www.nature.com/
- 11. Questel. База данных Orbit Premium edition https://www.orbit.com
- 12. China National Knowledge Infrastructure. БД Academic Reference https://ar.oversea.cnki.net/
- 13. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru

Информационные справочные системы

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

- 1. КиберЛенинка http://cyberleninka.ru/;
- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Лекториум ТВ видеолекции ведущих лекторов России http://www.lektorium.tv/
- 4. Freedom Collection полнотекстовая коллекция электронных журналов издательства Elsevier https://www.sciencedirect.com/
- 5. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 6. Федеральный портал "Российское образование" http://www.edu.ru/;
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Словари и энциклопедии http://dic.academic.ru/;
- 10. Образовательный портал "Учеба" http://www.ucheba.com/.

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 3. Открытая среда модульного динамического обучения КубГУ https://openedu.kubsu.ru/
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля) Общие рекомендации по самостоятельной работе обучающихся

Самостоятельная работа студентов осуществляется с целью углубления, расширения, систематизации и закрепления полученных теоретических знаний, формирования умений использовать документацию и специальную литературу, развития познавательных способностей и активности, а также формирования самостоятельного мышления, способностей к саморазвитию, самосовершенствованию и самореализации, развития исследовательских умений. Перед выполнением самостоятельной работы необходимо четко понимать цели и задачи работы, сроки выполнения, ориентировочный объем, основные требования к результатам работы, критерии оценки. Во время выполнения самостоятельной работы преподаватель может.

Методические рекомендации по освоению лекционного материала,

подготовке к лекциям:

Работа на лекции является очень важным видом студенческой деятельности для изучения дисциплины, т.к. на лекции происходит не только сообщение новых знаний, но и систематизация и обобщение накопленных знаний, формирование на их основе идейных взглядов, убеждений, мировоззрения, развитие познавательных и профессиональных интересов. Лектор ориентирует студентов в учебном материале. Краткие записи лекций (конспектирование) помогает усвоить материал.

Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Конспект лучше подразделять на пункты, строку. Принципиальные параграфы, соблюдая красную места, определения, формулы сопровождать замечаниями: «важно», «особо важно», «хорошо следует запомнить» и т.п. или подчеркивать красной ручкой. Целесообразно разработать собственную символику, сокращения слов, что позволит сконцентрировать внимание на важных сведениях. Прослушивание и запись лекции можно производить при помощи современных устройств (диктофон, ноутбук, нетбук и т.п.). Работая над конспектом лекций, всегда следует использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор, TOM числе периодические В издания соответствующей направленности. По результатам работы c конспектом следует обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии, на общении в контактные часы. Лекционный материал является базовым, с которого необходимо освоение соответствующего раздела или темы.

План подготовки к лекции:

- ознакомиться с темой лекшии
- ознакомиться с предложенными вопросами
- изучить соответствующий материал
- ознакомиться с литературой по теме

Методические рекомендации по подготовке презентаций:

- знакомиться с темой, целью и задачами
- составить план презентации согласно освоенному теоретическому материалу
- произвести поиск в лекционном материале, основной и дополнительной литературе фактического материала по теме
 - произвести поиск иллюстративного материала в сети "интернет"
 - составить презентацию при помощи специализированного ПО
 - составить доклад по иллюстративному материалу презентации
 - отрепетировать презентацию перед сдачей

Методические рекомендации по подготовке к коллоквиуму:

- ознакомиться с темой и вопросами коллоквиума
- изучить лекционный материал
- изучить основную литературу по теме
- изучить дополнительную литературу по теме
- написать ответ на предложенный вопрос
- объем письменного ответа от 3 до 4 страниц, время выполнения до 90 минут

Самостоятельная работа

Самостоятельная работа студентов дисциплине осуществляется с целью углубления, расширения, систематизации и закрепления полученных теоретических знаний, формирования умений использовать документацию и специальную литературу, развития познавательных способностей и активности, а также формирования самостоятельного

мышления, способностей к саморазвитию, самосовершенствованию и самореализации, развития исследовательских умений. Перед выполнением самостоятельной работы необходимо четко понимать цели и задачи работы, сроки выполнения, ориентировочный объем, основные требования к результатам работы, критерии оценки. Во время выполнения самостоятельной работы преподаватель может проводить консультации. Контроль результатов самостоятельной работы студентов может осуществляться в письменной, устной или смешанной форме, с представлением продукта творческой деятельности студента. В качестве форм и методов контроля самостоятельной работы студентов могут быть использованы семинарские занятия, коллоквиумы, зачеты, тестирование, самоотчеты, контрольные работы и др. Критериями оценки результатов самостоятельной работы студента являются: уровень освоения студентом учебного материала; умения студента использовать теоретические знания при выполнении индивидуальных заданий; обоснованность и четкость изложения ответа; оформление материала в соответствии с требованиями.

План подготовки:

- изучить соответствующий лекционный материал
- изучить основную литературу по теме
- изучить дополнительную литературу по теме
- оформить выполненную работу письменно или в виде презентации в зависимости от задания
- сделать структурированные выводы.

Методические рекомендации по подготовке к зачёту:

Зачет – это проверочное испытание по учебному предмету, своеобразный итоговый рубеж изучения дисциплины, позволяющий лучше определить уровень знаний, полученный обучающимися. Для успешной сдачи зачета студенты должны помнить следующее:

- к основным понятиям и категориям нужно знать определения, которые необходимо понимать и уметь пояснять;
- при подготовке к зачету требуется помимо лекционного материала, прочитать еще несколько учебников по дисциплине, дополнительные источники, предложенные для изучения в списке литературы;
- семинарские занятия способствуют получению более высокого уровня знаний и, как следствие, получение зачета;
- готовиться к зачету нужно начинать с первой лекции и семинара, а не выбирать так называемый «штурмовой метод», при котором материал закрепляется в памяти за несколько последних часов и дней перед зачетом. При оценивании знаний студентов преподаватель руководствуется, прежде всего, следующими критериями:
 - правильность ответов на вопросы;
 - полнота и лаконичность ответа;
- способность правильно квалифицировать факты и обстоятельства, анализировать статистические данные;
 - ориентирование в литературе;
 - знание основных проблем учебной дисциплины;
 - понимание значимости учебной дисциплины в системе;
 - логика и аргументированность изложения;
- культура ответа. Таким образом, при проведении зачета преподаватель уделяет внимание не только содержанию ответа, но и форме его изложения.

При подготовке к зачету необходимо ориентироваться на конспекты лекций, рабочую программу дисциплины, нормативную, учебную и рекомендуемую литературу.

Основное в подготовке к сдаче зачета – это повторение всего материала дисциплины, по которому необходимо сдавать зачет. При подготовке к сдаче весь объем работы нужно

распределять равномерно по дням, отведенным для подготовки, контролировать каждый день выполнение намеченной работы. В период подготовки студент вновь обращается к уже изученному (пройденному) учебному материалу. Подготовка включает в себя два этапа: самостоятельная работа в течение семестра; непосредственная подготовка в дни, предшествующие зачету по темам курса. Зачет проводится по вопросам, охватывающим пройденный материал дисциплины, включая вопросы, отведенные самостоятельного изучения. Для успешной сдачи указанные в рабочей программе формируемые компетенции в результате освоения дисциплины должны продемонстрированы; готовиться к зачёту необходимо начинать с первой лекции и первого семинара. В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование оборудованных учебных	перечень основного	Перечень лицензионного
кабинетов	оборудования	программного обеспечения
Учебная аудитория для проведения занятий	проектор, выход в Интернет,	Microsoft Windows
семинарского типа, учебная аудитория для		Microsoft Office
проведения лабораторных занятий,	учебная, учебная мебель,	
аудитория текущего контроля и	микроскопы, холодильник,	
промежуточной аттестации, учебная	шейкеры, термостат	
аудитория для проведения индивидуальных		
и групповых консультаций (ауд. 412):		
Учебная аудитория для проведения занятий		Microsoft Windows
семинарского типа, учебная аудитория для	электронные ресурсы, доска	Microsoft Office
проведения лабораторных занятий,	учебная, учебная мебель,	
аудитория текущего контроля и	-	
промежуточной аттестации, учебная	центрифуга, дозаторы,	
аудитория для проведения индивидуальных	фотоколориметр, весы	
и групповых консультаций (ауд. 419):		
Учебная аудитория для проведения п	проектор, выход в Интернет,	Microsoft Windows
занятий семинарского типа, учебная з	электронные ресурсы, доска учебная,	Microsoft Office
	учебная мебель, микроскопы,	
лабораторных занятий, аудитория	колодильник, шейкеры, центрифуга,	
	гермостаты, фотоколориметр,	
	дозаторы, спектрофотометр,	
-	паминарный шкаф, вытяжной шкаф,	
групповых консультаций (ауд. 414):	весы	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование оборудованных	Оснащенность помещений для	Перечень лицензионного
учебных кабинетов	самостоятельной работы обучающихся	программного
		обеспечения
Компьютерный класс, учебная	проектор, компьютерная техника с	Microsoft Windows
аудитория для проведения лабораторных занятий, аудитория для самостоятельной работы (ауд. 437)	подключением к информационно- коммуникационной сети "Интернет" (проводное соединение и беспроводное соединение по технологии Wi-Fi) и доступом в электронную информационно- образовательную среду, веб-камера, доска	Microsoft Office
	учебная, учебная мебель.	